Join today and have your say! It’s FREE!

Become a member today, It's free!

We will not release or resell your information to third parties without your permission.
Please Try Again
{{ error }}
By providing my email, I consent to receiving investment related electronic messages from Stockhouse.

or

Sign In

Please Try Again
{{ error }}
Password Hint : {{passwordHint}}
Forgot Password?

or

Please Try Again {{ error }}

Send my password

SUCCESS
An email was sent with password retrieval instructions. Please go to the link in the email message to retrieve your password.

Become a member today, It's free!

We will not release or resell your information to third parties without your permission.
Quote  |  Bullboard  |  News  |  Opinion  |  Profile  |  Peers  |  Filings  |  Financials  |  Options  |  Price History  |  Ratios  |  Ownership  |  Insiders  |  Valuation

Theralase Technologies Inc. V.TLT

Alternate Symbol(s):  TLTFF

Theralase Technologies Inc. is a Canada-based clinical-stage pharmaceutical company. The Company is engaged in the research and development of light activated compounds and their associated drug formulations. The Company operates through two divisions: Anti-Cancer Therapy (ACT) and Cool Laser Therapy (CLT). The Anti-Cancer Therapy division develops patented, and patent pending drugs, called Photo Dynamic Compounds (PDCs) and activates them with patent pending laser technology to destroy specifically targeted cancers, bacteria and viruses. The CLT division is responsible for the Company’s medical laser business. The Cool Laser Therapy division designs, develops, manufactures and markets super-pulsed laser technology indicated for the healing of chronic knee pain. The technology has been used off-label for healing numerous nerve, muscle and joint conditions. The Company develops products both internally and using the assistance of specialist external resources.


TSXV:TLT - Post by User

Post by Eoganachton Jul 19, 2021 10:43am
195 Views
Post# 33568997

X-ray activated nanoparticles destroy cancer in vitro....

X-ray activated nanoparticles destroy cancer in vitro........mouse models next. Researchers at Kyoto University, Japan have succeeded in destroying human ovarian cancer cells in vitro using silica nanoparticles containing iodine activated by specific wavelengths of X-rays. Instead of producing reactive oxygen species, activation involves the release of electrons that cause tumour DNA double strand breaks which induce apoptosis. The nanoparticles are preferentially taken up by the cancer cells.

"In addition, the nanoparticles have the potential to accumulate in the tumor due to passive as well as active mechanisms. Indeed, in vivo, the high vascularization and porosity of the blood vessel wall lead to preferential accumulation of nanoparticles in the tumor cells compared to healthy cells. This phenomenon, called Enhanced Permeability and Retention effect (EPR effect) has been widely used to target preferentially cancer cells and surface modification can also be performed as an active targeting strategy."

Full paper available at:

Iodine containing porous organosilica nanoparticles trigger tumor spheroids destruction upon monochromatic X-ray irradiation: DNA breaks and K-edge energy X-ray
 
Open Access   Published: 14 July 2021
 
Yuya Higashi, Kotaro Matsumoto, Hiroyuki Saitoh, Ayumi Shiro, Yue Ma, Mathilde Laird, Shanmugavel Chinnathambi, Albane Birault, Tan Le Hoang Doan, Ryo Yasuda, Toshiki Tajima, Tetsuya Kawachi & Fuyuhiko Tamanoi
 
Abstract
 
X-ray irradiation of high Z elements causes photoelectric effects that include the release of Auger electrons that can induce localized DNA breaks. We have previously established a tumor spheroid-based assay that used gadolinium containing mesoporous silica nanoparticles and synchrotron-generated monochromatic X-rays. In this work, we focused on iodine and synthesized iodine-containing porous organosilica (IPO) nanoparticles. IPO were loaded onto tumor spheroids and the spheroids were irradiated with 33.2 keV monochromatic X-ray. After incubation in CO2 incubator, destruction of tumor spheroids was observed which was accompanied by apoptosis induction, as determined by the TUNEL assay. By employing the γH2AX assay, we detected double strand DNA cleavages immediately after the irradiation. These results suggest that IPO first generate double strand DNA breaks upon X-ray irradiation followed by apoptosis induction of cancer cells. Use of three different monochromatic X-rays having energy levels of 33.0, 33.2 and 33.4 keV as well as X-rays with 0.1 keV energy intervals showed that the optimum effect of all three events (spheroid destruction, apoptosis induction and generation of double strand DNA breaks) occurred with a 33.2 keV monochromatic X-ray. These results uncover the preferential effect of K-edge energy X-ray for tumor spheroid destruction mediated by iodine containing nanoparticles.


<< Previous
Bullboard Posts
Next >>