Part 1 in a three-part series for lithium investors
As a general rule, the most successful man in life is the man who has the best information- Benjamin Disraeli
The Puna plateau sits at an elevation of 4,000m, stretches for 1800 km along the Central Andes and attains a width of 350–400 km. The Puna covers a portion of Argentina, Chile and Bolivia and hosts an estimated 70 - 80% of global lithium brine reserves.
The evaporate mineral deposits on the plateau - which may contain potash, lithium and boron - are formed by intense evaporation under hot, dry and windy conditions in an endorheic basin - endorheic basins are closed drainage basins that retain water and allow no outflow - precipitation and inflow water from the surrounding mountains only leaves the system by evaporation and seepage. The surface of such a basin is typically occupied by a salt lake or salt pan. Most of these salt lakes - called salars - contain brines which are capable of providing more than one potentially economic product.
This Puna Plateau area of the Andean mountains - where the borders of Argentina, Bolivia and Chile meet and bounded by the Salar de Atacama, the Salar de Uyuni and the Salar de Hombre Muerto - is often referred to as the Lithium Triangle and the three countries mentioned are the Lithium ABCs.
A brine “mining” business model
The salt rich brines are pumped from beneath the crust that’s on the salar and fed into a series of large, shallow ponds. Initial 200 to +1,000 parts per million (ppm) lithium brine solution is concentrated by solar evaporation and wind up to 6,000 ppm lithium after 18 - 24 months.
The extraction process is low cost/high margin and battery grade lithium carbonate can be extracted. The cost-effectiveness of brine operations forced even large producers in China and Russia to develop their own brine sources or buy most of their needed raw materials from brine producers.
The major lithium producers, from brine, are the "Lithium Three”: Sociedad Quimica y Minera (NYSE: SQM, Stock Forum), Rockwood/Chemetall (NYSE: ROC, Stock Forum) and FMC (NYSE: FMC, Stock Forum).
The Lithium Three are all extracting lithium from Puna Plateau salar brines. The majority of lithium produced today comes from brines in Chile, Argentina and Nevada.
These brines are considered primarily potash deposits with lithium as a by-product.
The above diagram was designed to show that several commercial products can be recovered from typical brine and that the recovery takes place in a series of steps over the entire evaporation process. Note that the final product in each step may require processing in a specialized plant. Also please note that the actual sequence of process steps may vary from brine to brine, and as such, the process steps shown above may not be in the correct order for any specific brine.
SQM’s Atacama brine deposits have the highest lithium content on the Puna - yet just 11% of its 2009 revenues were from lithium - 70% of SQM's revenues are from fertilizers. SQM is the world's largest producer of lithium and lithium is SQM's highest gross margin product at +50%.
Lithium
The world’s future energy course is being charted today because of the ramifications of peak oil and a need to reduce our carbon footprints.
A whole new industry - a global wide automotive and industrial lithium-ion battery industry - is going to be built. As a result of lithium-ion battery demand for hybrid-electric and electric cars the increase in demand for lithium carbonate is expected to increase four-fold by 2017.
Lithium-ion batteries have become the rechargeable battery of choice in cell phones, computers, hybrid-electric cars and electric cars. Chrysler, Dodge, Ford, GM, Mercedes-Benz, Mitsubishi, Nissan, Saturn, Tesla and Toyota have all announced plans to build lithium-ion battery powered cars.
Demand for lithium powered vehicles is expected to increase fivefold by 2012. The worldwide market for lithium batteries is estimated at over $4 billion per year.
Lithium carbonate is also an important industrial chemical:
• It forms low-melting fluxes with silica and other materials
• Glasses derived from lithium carbonate are useful in ovenware
• Cement sets more rapidly when prepared with lithium carbonate, and is useful for tile adhesives
• When added to aluminum trifluoride, it forms LiF which gives a superior electrolyte for the processing of aluminum
• Lithium carbonate can be used in a type of carbon dioxide sensor.
Demand today is in the range of 120,000 tonnes of lithium carbonate equivalent (LCE) annually. Lithium is not traded publicly - and is usually distributed in a chemical form such as lithium carbonate (Li2CO3) - instead it’s sold directly to end users for a negotiated price per tonne of Lithium carbonate (Li2CO3).
Production figures are often quoted in lithium carbonate equivalent quantities. By weight approximately 18.8% of lithium carbonate is lithium. Therefore 1kg of lithium is the equivalent of 5.3 kg of lithium carbonate.
"We are projecting 40% Li demand increase by 2014, with batteries accounting for 34% of use, the largest single end-use segment." Jon Hykawy, analyst Byron Capital Markets
Lithium-ion batteries are quickly becoming the most prevalent type of battery used in everything from laptops to cell phones to hybrid and fully electric cars to short term power storage devices for wind and solar generated power. At present, 39 per cent of lithium-ion batteries are produced in Japan, 39 per cent in China and 20 per cent in South Korea.
"With forecast 10% to 20% penetration rates by 2020 for pure and hybrid electric vehicles, we expect an incremental increase in demand of 286,000 tonnes of lithium carbonate equivalent, significantly outstripping current supply.” Canaccord Adams analyst, Eric Zaunscherb
“Our electric vehicle investment is not one-car innovation, it is a new way of looking at our industry. This is the beginning of the story.” Carlos Ghosn, Nissan chief executive officer
Sodium chloride (rock salt or halite)
The principal use for salt is in the chemical manufacturing business - chloralkali and synthetic soda ash producers use salt as their primary raw material.
Salt is used in many applications and almost every industry:
• Cooking
• Manufacturing pulp and paper
• Setting dyes in textiles and fabric
• Producing soaps, detergents, and other bath products
• Major source of industrial chlorine and sodium hydroxide
Global demand for salt is forecast to grow 2.5 percent per year to 305 million metric tons in 2013.
Solar evaporation is the most popular and most economical method of producing salt. China is the world’s largest consumer of salt – other than the dietary needs of 1.3 billion people - there’s an enormous chemical manufacturing industry being built in China.
Boron
Boron combines with oxygen and other elements to form boric acid, or inorganic salts called borates.
Borates are used for:
• Insulation fiberglass
• Textile fiberglass
• Heat-resistant glass
• Detergents, soaps and personal care products
• Ceramic and enamel frits and glazes
• Ceramic tile bodies
• Agricultural micronutrients
• Wood treatments
• Polymer additives
• Pest control products
• Boron is an essential component in the manufacture of borosilicate glass used in LCD screens
Boric Acid uses:
• As an antiseptic/anti-bacterial compound
• Insecticide
• Flame retardant
• In nuclear power plants to control the fission rate of uranium*
• As a precursor of other chemical compounds
*Boric acid is used in nuclear power plants to slow down the rate at which fission occurs. Boron is also dissolved into the spent fuel cooling pools containing used fuel rods. Natural boron is 20% boron-10 which can absorb a lot of neutrons. When you add boric acid to the reactor coolant – or to the spent fuel rod cooling pools - the probability of fission is reduced.
The first half of 2009 saw a sharp drop in demand for borates, but in the second half of the year markets for both textile-grade fibreglass and borosilicate glass recovered.
World production of borates remains mostly concentrated in the US and Turkey – these two countries account for 75% of supply.
Chinese boron - both in terms of quantity and grade - is inadequate to meet domestic demand so the country is now the largest importer of both natural borates and boric acid.
Silly Putty was originally made by adding boric acid to silicone oil. J
Tomorrow part 2: Potash is fuel for food
Richard (Rick) Mills
rick@aheadoftheherd.com
www.aheadoftheherd.com
If you're interested in the junior resource market and would like to learn more please come and visit us at aheadoftheherd.com