Join today and have your say! It’s FREE!

Become a member today, It's free!

We will not release or resell your information to third parties without your permission.
Please Try Again
{{ error }}
By providing my email, I consent to receiving investment related electronic messages from Stockhouse.

or

Sign In

Please Try Again
{{ error }}
Password Hint : {{passwordHint}}
Forgot Password?

or

Please Try Again {{ error }}

Send my password

SUCCESS
An email was sent with password retrieval instructions. Please go to the link in the email message to retrieve your password.

Become a member today, It's free!

We will not release or resell your information to third parties without your permission.
Quote  |  Bullboard  |  News  |  Opinion  |  Profile  |  Peers  |  Filings  |  Financials  |  Options  |  Price History  |  Ratios  |  Ownership  |  Insiders  |  Valuation

COSCIENS Biopharma Inc T.CSCI

Alternate Symbol(s):  CSCI

COSCIENS Biopharma Inc., formerly Aeterna Zentaris Inc., is a specialty biopharmaceutical company engaged in the development and commercialization of a diverse portfolio of pharmaceutical and diagnostic products, including those focused on areas of unmet medical need. Its lead product, macimorelin (Macrilen; Ghryvelin), is an oral test indicated for the diagnosis of adult growth hormone deficiency (AGHD). The Company is also engaged in the development of therapeutic assets and proprietary extraction technology, which is applied to the production of active ingredients from renewable plant resources used in cosmeceutical products (i.e., oat beta glucan and avenanthramides, which are found in skincare product brands like Aveeno and Burt’s Bees formulations) and being developed as potential nutraceuticals and/or pharmaceuticals.


TSX:CSCI - Post by User

Post by prophetoffactzon Aug 12, 2024 12:03am
227 Views
Post# 36173862

Macrophages and COVID

Macrophages and COVID
2024 Jun 3;221(6):e20232192.
 doi: 10.1084/jem.20232192. Epub 2024 Apr 10.

Interstitial macrophages are a focus of viral takeover and inflammation in COVID-19 initiation in human lung

Abstract

Early stages of deadly respiratory diseases including COVID-19 are challenging to elucidate in humans. Here, we define cellular tropism and transcriptomic effects of SARS-CoV-2 virus by productively infecting healthy human lung tissue and using scRNA-seq to reconstruct the transcriptional program in "infection pseudotime" for individual lung cell types. SARS-CoV-2 predominantly infected activated interstitial macrophages (IMs), which can accumulate thousands of viral RNA molecules, taking over 60% of the cell transcriptome and forming dense viral RNA bodies while inducing host profibrotic (TGFB1, SPP1) and inflammatory (early interferon response, CCL2/7/8/13, CXCL10, and IL6/10) programs and destroying host cell architecture. Infected alveolar macrophages (AMs) showed none of these extreme responses. Spike-dependent viral entry into AMs used ACE2 and Sialoadhesin/CD169, whereas IM entry used DC-SIGN/CD209. These results identify activated IMs as a prominent site of viral takeover, the focus of inflammation and fibrosis, and suggest targeting CD209 to prevent early pathology in COVID-19 pneumonia. This approach can be generalized to any human lung infection and to evaluate therapeutics.


<< Previous
Bullboard Posts
Next >>