Join today and have your say! It’s FREE!

Become a member today, It's free!

We will not release or resell your information to third parties without your permission.
Please Try Again
{{ error }}
By providing my email, I consent to receiving investment related electronic messages from Stockhouse.

or

Sign In

Please Try Again
{{ error }}
Password Hint : {{passwordHint}}
Forgot Password?

or

Please Try Again {{ error }}

Send my password

SUCCESS
An email was sent with password retrieval instructions. Please go to the link in the email message to retrieve your password.

Become a member today, It's free!

We will not release or resell your information to third parties without your permission.
Quote  |  Bullboard  |  News  |  Opinion  |  Profile  |  Peers  |  Filings  |  Financials  |  Options  |  Price History  |  Ratios  |  Ownership  |  Insiders  |  Valuation

Pyrogenesis Canada Inc T.PYR

Alternate Symbol(s):  PYRGF

PyroGenesis Canada Inc. is a Canada-based high-tech company. It is engaged in the design, development, manufacture and commercialization of advanced plasma processes and sustainable solutions which reduce greenhouse gases. It offers patented and advanced plasma technologies that are used in four markets: iron ore palletization, aluminum, waste management, and additive manufacturing. Its products and services include Plasma Atomized Metal Powders, Aluminum and Zinc Dross Recovery (DROSRITE), waste management, plasma torches, and Innovation/Custom Process Development. It also operates PUREVAP NSiR, which is a proprietary process that can use different purities of silicon as feedstock to make a range of spherical silicon nano- and micro-powders and wires, for use across various applications. Its products and services are commercialized to customers operating in a range of industries, including the defense, metallurgical, mining, advanced materials, oil & gas, and environmental industries.


TSX:PYR - Post by User

Post by ScienceFirston Dec 29, 2020 7:45pm
308 Views
Post# 32194298

Hydrogen: where is low-carbon fuel most useful?

Hydrogen: where is low-carbon fuel most useful? Very interesting recent article on the hydrogen markets!

Of course, some markets would become even more economical/competitive if Apollon/PYR/HPQ technology becomes disruptive or a real game changer.


 
November 9, 2020 
 
Is hydrogen the lifeblood of a low-carbon future, or an overhyped distraction from real solutions?
 
Is the best solution in all cases to swap them with hydrogen – a fuel which only produces water vapour, and not CO, when burned?
 
Answering that question are six experts in engineering, physics and chemistry.
 
 
Some excerpts ...  Read the whole article.
 

Road and rail

Hu Li, Associate Professor of Energy Engineering, University of Leeds
 
Replacing the internal combustion engines of passenger cars and light-duty vehicles with batteries could accelerate the process of decarbonising road transport, but electrification isn’t such a good option for heavy-duty vehicles such as lorries and buses. Compared to gasoline and diesel fuels, the energy density (measured in megajoules per kilogram) of a battery is just 1%. For a 40-tonne truck, just over four tonnes of lithium-ion battery cells are needed for a range of 800 kilometres, compared to just 220 kilograms of diesel.
 
 
With the UK government set to ban fossil fuel vehicles from 2035, hydrogen fuel cells could do much of the heavy lifting in decarbonising freight and public transport, where 80% of hydrogen demand in transport is likely to come from.
 
...
 

Hydrogen can play a key role in decarbonising rail travel too, alongside other low-carbon fuels, such as biofuels. In the UK, 6,049 kilometres of mainline routes run on electricity – that’s 38% of the total. Trains powered by hydrogen fuel cells offer a zero-emission alternative to diesel trains.

The Coradia iLint, which entered commercial service in Germany in 2018, is the world’s first hydrogen-powered train. The UK recently launched mainline testing of its own hydrogen-powered train, though the UK trial aims to retrofit existing diesel trains rather than design and build entirely new ones.
 

Aviation

Valeska Ting, Professor of Smart Nanomaterials, University of Bristol
 
Hydrogen is extremely light and contains three times more energy per kilogram than jet fuel, which is why it’s traditionally used to power rockets. Companies including Airbus are already developing commercial zero-emission aircraft that run on hydrogen. This involves a radical redesign of their fleet to accommodate liquid hydrogen fuel tanks.
 
 

Heating

 

Tom Baxter, Honorary Senior Lecturer in Chemical Engineering, University of Aberdeen & Ernst Worrell, Professor of Energy, Resources and Technological Change, Utrecht University

If the All Party Parliamentary Group on Hydrogen’s recommendations are taken up, the UK government is likely to support hydrogen as a replacement fuel for heating buildings in its next white paper.
 

Electricity and energy storage

 

Petra de Jongh, Professor of Catalysts and Energy Storage Materials, Utrecht University

Fossil fuels have some features that seem impossible to beat. They’re packed full of energy, they’re easy to burn and they’re compatible with most engines and generators. Producing electricity using gas, oil, or coal is cheap, and offers complete certainty about, and control over, the amount of electricity you get at any point in time.

Meanwhile, how much wind or solar electricity we can generate isn’t something that we enjoy a lot of control over. It’s difficult to even adequately predict when the sun will shine or the wind will blow, so renewable power output fluctuates. Electricity grids can only tolerate a limited amount of fluctuation, so being able to store excess electricity for later is key to switching from fossil fuels.

Hydrogen seems ideally suited to meet this challenge. Compared to batteries, the storage capacity of hydrogen is unlimited – the electrolyser which produces it from water never fills up. Hydrogen can be converted back into electricity using a fuel cell too, though quite a bit of energy is lost in the process.

Heavy industry

Stephen Carr, Lecturer in Energy Physics, University of South Wales

Industry is the second most polluting sector in the UK after transport, accounting for 21% of the UK’s total carbon emissions. A large proportion of these emissions come from processes involving heat, whether it’s firing a kiln to very high temperatures to produce cement or generating steam to use in an oven making food. Most of this heat is currently generated using natural gas, which will need to be swapped out with a zero-carbon fuel, or electricity.

Swapping natural gas with hydrogen in burners could be cheaper overall, and would require only slight changes to equipment. The Committee on Climate Change, which advises the UK government, reports that 90 TWh of industrial fossil fuel energy per year (equivalent to the total annual consumption of Wales) could be replaced with hydrogen by 2040. Hydrogen will be the cheapest option in most cases, while for 15 TWh of industrial fossil fuel energy, hydrogen is the only suitable alternative.

Hydrogen is already used in industrial processes such as oil refining, where it’s used to react with and remove unwanted sulphur compounds. Since most hydrogen currently used in the UK is derived from fossil fuels, it will be necessary to ramp up renewable energy capacity to deliver truly green hydrogen before it can replace the high-carbon fuels powering industrial processes.

 

The same rule applies to each of these sectors – hydrogen is only as green as the process that produced it. Green hydrogen will be part of the solution in combination with other technologies and measures, including lithium-ion batteries, and energy efficiency. But the low-carbon fuel will be most useful in decarbonising the niches that are currently difficult for electrification to reach, such as heavy-duty vehicles and industrial furnaces.


<< Previous
Bullboard Posts
Next >>