GREY:ABGPF - Post by User
Post by
vessobon Aug 30, 2015 5:08am
155 Views
Post# 24063005
Interesting facts while we wait ...
Interesting facts while we wait ... - There is approximately 10 times more graphite in a lithium-ion battery than there is lithium.
-
- Approximately 45,000 tonnes per year of spherical graphite is consumed globally in the manufacturing of anodes for lithium-ion batteries alone, with approximately 30,000 tonnes being natural. (source: Avicenne Battery Report)
-
- The main substitute for natural graphite is synthetic graphite, which is made from a by-product of petroleum refining, is a very energy intensive and expensive process that has a larger environmental impact than its natural counterpart.
-
- Today, lithium-ion batteries for EVs are a mixture of both natural and synthetic graphite, with the synthetic graphite being as much as double the cost to produce as compared to natural flake graphite. (source: Industrial Minerals)
-
- Uncoated spherical graphite ranges between $2,500-$3,000/tonne, while coated material hovers around $7,000-10,000/tonne. For synthetic spherical graphite, the prices can be as much as $15,000-$20,000/tonne. (source: Industrial Minerals price database)
-
- The amount of natural graphite in an average hybrid EV is 10 kilograms or 22 pounds; an average EV is 50 kilograms or 110 pounds; a Tesla Model S has 80 kilograms or 170 pounds. (source: Toyota)
-
- The Tesla Gigafactory, if producing at capacity, would consume approximately 40,000 tonnes of spherical graphite by the year 2020. This represents the entire current global output of spherical graphite for lithium-ion batteries. (source: Benchmark Mineral Intelligence)
-
- The process of "rounding" flake graphite into spherical graphite is inefficient. It takes approximately 2 to 2.5 tonnes of natural flake graphite to produce 1 tonne of battery-grade spherical graphite.
-
- Natural graphite performs better than synthetic in increasing the energy density (i.e. range) of a lithium battery for EV applications. A battery made with 100% natural would outperform an all-synthetic counterpart. (source: Toyota)
-
- Synthetic graphite is used because of its consistent high quality and purity, security of supply and can be easily engineered to the exact requirements needed for the battery chemistry of the anode.
-
- Over the last decade, use of natural graphite has been steadily increasing in lithium-ion batteries. In 2013, a lithium-ion graphite anode consisted on average of 64% natural and 26% synthetic. The weighting of natural graphite versus synthetic is predicted to rise even further. In 2003, the split was 75%/25% in favour of synthetic. (source: Avicenne Battery Report)