Join today and have your say! It’s FREE!

Become a member today, It's free!

We will not release or resell your information to third parties without your permission.
Please Try Again
{{ error }}
By providing my email, I consent to receiving investment related electronic messages from Stockhouse.

or

Sign In

Please Try Again
{{ error }}
Password Hint : {{passwordHint}}
Forgot Password?

or

Please Try Again {{ error }}

Send my password

SUCCESS
An email was sent with password retrieval instructions. Please go to the link in the email message to retrieve your password.

Become a member today, It's free!

We will not release or resell your information to third parties without your permission.
Quote  |  Bullboard  |  News  |  Opinion  |  Profile  |  Peers  |  Filings  |  Financials  |  Options  |  Price History  |  Ratios  |  Ownership  |  Insiders  |  Valuation

Theralase Technologies Inc. V.TLT

Alternate Symbol(s):  TLTFF

Theralase Technologies Inc. is a Canada-based clinical-stage pharmaceutical company. The Company is engaged in the research and development of light activated compounds and their associated drug formulations. The Company operates through two divisions: Anti-Cancer Therapy (ACT) and Cool Laser Therapy (CLT). The Anti-Cancer Therapy division develops patented, and patent pending drugs, called Photo Dynamic Compounds (PDCs) and activates them with patent pending laser technology to destroy specifically targeted cancers, bacteria and viruses. The CLT division is responsible for the Company’s medical laser business. The Cool Laser Therapy division designs, develops, manufactures and markets super-pulsed laser technology indicated for the healing of chronic knee pain. The technology has been used off-label for healing numerous nerve, muscle and joint conditions. The Company develops products both internally and using the assistance of specialist external resources.


TSXV:TLT - Post by User

Bullboard Posts
Post by Eoganachton Jun 26, 2020 12:05pm
292 Views
Post# 31195623

Nature Communications article

Nature Communications articleRationally designed ruthenium complexes for 1- and 2-photon photodynamic therapy

Open Access
Published: 26 June 2020
 
Johannes Karges, Shi Kuang, Federica Maschietto, Olivier Blacque, Ilaria Ciofini, Hui Chao & Gilles Gasser
 
Abstract
 
The use of photodynamic therapy (PDT) against cancer has received increasing attention over recent years. However, the application of the currently approved photosensitizers (PSs) is limited by their poor aqueous solubility, aggregation, photobleaching and slow clearance from the body. To overcome these limitations, there is a need for the development of new classes of PSs with ruthenium(II) polypyridine complexes currently gaining momentum. However, these compounds generally lack significant absorption in the biological spectral window, limiting their application to treat deep-seated or large tumors. To overcome this drawback, ruthenium(II) polypyridine complexes designed in silico with (E,E′)-4,4′-bisstyryl-2,2′-bipyridine ligands show impressive 1- and 2-Photon absorption up to a magnitude higher than the ones published so far. While nontoxic in the dark, these compounds are phototoxic in various 2D monolayer cells, 3D multicellular tumor spheroids and are able to eradicate a multiresistant tumor inside a mouse model upon clinically relevant 1-Photon and 2-Photon excitation.
 
Introduction
 
Due to the increasing impact of cancer on the life quality and mortality of humans, increasing research efforts are devoted toward the development of anticancer drugs and strategies. Among the most commonly used techniques to fight this disease (i.e., surgery, chemotherapy, and radiotherapy), photodynamic therapy (PDT) is receiving increasing attention during the last decades. In PDT, a photosensitizer (PS) is activated upon light irradiation to generate reactive oxygen species (ROS). As the majority  of currently approved PSs are based on tetrapyrrolic structures (i.e., porphyrin, chlorin, and phthalocyanine), these compounds share similar drawbacks (e.g., poor aqueous solubility, aggregation, photobleaching, slow clearance from the body, and hepatotoxicity). To overcome these limitations, there is a need for the development of new classes of PSs. Among others, the use of transition metal complexes and especially, Ru(II) polypyridine complexes are gaining momentum due to their attractive photophysical and chemical properties (i.e., strong luminescence, high singlet oxygen production, high chemical, and photophysical stability) with the compound TLD-1433 having just entered phase II clinical trials for the treatment of non-muscle invasive bladder cancer..........................................
 
Bullboard Posts