Join today and have your say! It’s FREE!

Become a member today, It's free!

We will not release or resell your information to third parties without your permission.
Please Try Again
{{ error }}
By providing my email, I consent to receiving investment related electronic messages from Stockhouse.

or

Sign In

Please Try Again
{{ error }}
Password Hint : {{passwordHint}}
Forgot Password?

or

Please Try Again {{ error }}

Send my password

SUCCESS
An email was sent with password retrieval instructions. Please go to the link in the email message to retrieve your password.

Become a member today, It's free!

We will not release or resell your information to third parties without your permission.
Quote  |  Bullboard  |  News  |  Opinion  |  Profile  |  Peers  |  Filings  |  Financials  |  Options  |  Price History  |  Ratios  |  Ownership  |  Insiders  |  Valuation

Theralase Technologies Inc. V.TLT

Alternate Symbol(s):  TLTFF

Theralase Technologies Inc. is a Canada-based clinical-stage pharmaceutical company. The Company is engaged in the research and development of light activated compounds and their associated drug formulations. The Company operates through two divisions: Anti-Cancer Therapy (ACT) and Cool Laser Therapy (CLT). The Anti-Cancer Therapy division develops patented, and patent pending drugs, called Photo Dynamic Compounds (PDCs) and activates them with patent pending laser technology to destroy specifically targeted cancers, bacteria and viruses. The CLT division is responsible for the Company’s medical laser business. The Cool Laser Therapy division designs, develops, manufactures and markets super-pulsed laser technology indicated for the healing of chronic knee pain. The technology has been used off-label for healing numerous nerve, muscle and joint conditions. The Company develops products both internally and using the assistance of specialist external resources.


TSXV:TLT - Post by User

Bullboard Posts
Post by investclubon Aug 04, 2020 9:45am
271 Views
Post# 31360268

Lothar Lilge

Lothar Lilge
 
Lothar Lilge, PhD
 
Senior Scientist, Princes Margaret  
 
Research InterestsPublicationsAdditional Appointments
 
Applications of light and lasers in medical pre-clinical and clinical research 
 
Dr. Lilge's research is focused on enabling/improving: 1) the use of light for clinical diagnostic and/or therapeutic applications; and 2) the use of light as a microscopic tool for biomedical research.
 
An example of optical medical diagnostics is the use of transillumination spectroscopy combined with numerical biostatistical methods to quantify cancer risk. This work is based on the theory of tissue field transformation prior to the development of dysplasia and carcinoma in situ. To establish optical transillumination as a cancer risk assessment tool cross sectional clinical studies are underway or planned using an established epidemiological marker as a gold standard. In the case of breast cancer this marker is the parenchymal density pattern as observed in standard mammography. Transillumination spectra show high sensitivity and specificity to classify women as having high or low parenchymal density pattern. Another potential application for this technology are risk determination for various neurological deficiencies.
 
An example for ongoing work towards clinical optical therapeutics is to increase the efficacy of photodynamic therapy (PDT) by enabling treatment monitoring using fiber optical probes. In this cancer treatment modality, light activated drugs produce extremely short lived cytotoxic substances. To date three parameters (molecular oxygen, light radiance and drug concentration) are identified to govern the treatment's efficacy. By controlling the local light intensity online, the production of cytotoxic substances can be adjusted, based on the available oxygen and photosensitizer to maximize the tumoricidal effect while sparing normal healthy tissue.
 
The project includes the development of interstitial sensors based on optical fibre technology and quantification of the biologicalin vivo response in different tissues. The long term goal of this research aims to enable a selective apoptotic or necrotic responses in the tumour.
 
The biochemical pathways activated in various cell lines are investigated in a separate project using confocal laser scanning microscopy and fluorescent antibodies towards identified proteins in apoptotic pathways. Of special interest is the so-called bystander effect which suggests that cells react as an ensemble PDT.
 
Optical micro manipulating tools for biomedical research comprises the combination of tools such as optical tweezers, optical scissors, chromophore assisted laser inactivation and capillary elecrophoresis, to sort, manipulate and detect cells and/or biological macromolecules including proteins, DNA and mRNA. Integrated optical solutions for cell culture and biopsy analysis as an alternative to flow cytometry, ELISA or electrophoresis are sought.
 
 
Bullboard Posts