Join today and have your say! It’s FREE!

Become a member today, It's free!

We will not release or resell your information to third parties without your permission.
Please Try Again
{{ error }}
By providing my email, I consent to receiving investment related electronic messages from Stockhouse.

or

Sign In

Please Try Again
{{ error }}
Password Hint : {{passwordHint}}
Forgot Password?

or

Please Try Again {{ error }}

Send my password

SUCCESS
An email was sent with password retrieval instructions. Please go to the link in the email message to retrieve your password.

Become a member today, It's free!

We will not release or resell your information to third parties without your permission.
Quote  |  Bullboard  |  News  |  Opinion  |  Profile  |  Peers  |  Filings  |  Financials  |  Options  |  Price History  |  Ratios  |  Ownership  |  Insiders  |  Valuation

Theralase Technologies Inc. V.TLT

Alternate Symbol(s):  TLTFF

Theralase Technologies Inc. is a Canada-based clinical-stage pharmaceutical company. The Company is engaged in the research and development of light activated compounds and their associated drug formulations. The Company operates through two divisions: Anti-Cancer Therapy (ACT) and Cool Laser Therapy (CLT). The Anti-Cancer Therapy division develops patented, and patent pending drugs, called Photo Dynamic Compounds (PDCs) and activates them with patent pending laser technology to destroy specifically targeted cancers, bacteria and viruses. The CLT division is responsible for the Company’s medical laser business. The Cool Laser Therapy division designs, develops, manufactures and markets super-pulsed laser technology indicated for the healing of chronic knee pain. The technology has been used off-label for healing numerous nerve, muscle and joint conditions. The Company develops products both internally and using the assistance of specialist external resources.


TSXV:TLT - Post by User

Post by Eoganachton Feb 02, 2022 1:19pm
894 Views
Post# 34389772

UTA article on Dr. McFarland's latest research paper

UTA article on Dr. McFarland's latest research paperUTA CHEMISTS DISCOVER POTENT ANTI-CANCER AGENT

New chemical compound destroys cancer cells in low-oxygen environments
 
WEDNESDAY, FEB 02, 2022 • LINSEY RETCOFSKY

Sherri McFarland, chemistry professor, wears a lab coat in her laboratory." _languageinserted="true

Sherri McFarland, professor of chemistry


A multi-institutional team of researchers led by chemists from The University of Texas at Arlington has published a paper in the Journal of the American Chemical Society that describes its discovery of a potent anti-cancer agent that works exceptionally well amid low oxygen concentrations.
 
The findings reported in the paper, “Anticancer Agent With Inexplicable Potency in Extreme Hypoxia: Characterizing a Light-Triggered Ruthenium Ubertoxin,” represent a major advancement in the battle to develop drugs that can destroy cancer cells in the most toxic tumor environments.
 
Sherri McFarland, professor of chemistry and biochemistry and the paper’s senior author, said her research team discovered the agent during its investigation to solve one of cancer therapy’s most pressing issues.
 
“Drug-resistant tumors often exhibit a phenomenon known as hypoxia, or low oxygen concentration, which promotes tumor growth and can render many treatments ineffective,” McFarland said. “The holy grail for researchers in our field is to make compounds that can kill cancer cells when oxygen levels are really low.”
 
The study introduces a chemical compound containing the transition metal ruthenium as a light-responsive, anti-cancer agent that is water-soluble, is inactive in the absence of a light trigger, is active in low-oxygen environments and exhibits extremely potent therapeutic characteristics using visible light. The anticancer effects on cancer cells reported in the paper are the largest to date for any compound class.
 
McFarland’s team specializes in photodynamic therapy, a cancer treatment that uses light to target and destroy tumor cells. Her lab develops and tests chemical compounds that, when exposed to light, produce a powerful oxygen reaction. The combination of transition metal compounds, light and oxygen generates highly selective cancer-fighting agents that do not affect surrounding healthy tissue.
 
One of her lab’s ruthenium-based photodrugs, TLD1433, is currently in a phase II clinical study for patients with recurring bladder cancer.

Houston Cole stands smiling in front of a UTA building." _languageinserted="true

Houston Cole, doctoral researcher in McFarland's lab

 
Houston Cole, first author and a fourth-year doctoral student under McFarland’s supervision, said seeing compounds transition from the lab to clinical human trials motivates his research.
 
“Day-to-day we are able to make the real-life connection from our explorations in the lab to drugs like TLD1433 that are making a difference in people’s lives,” Cole said. “We also draw inspiration from the scientific challenge to make effective drugs for hypoxic environments and understand how they work.”

<< Previous
Bullboard Posts
Next >>