VANCOUVER, British Columbia and SYDNEY, Australia, May 01, 2023 (GLOBE NEWSWIRE) --
Highlights
- Extension of the CV5 spodumene pegmatite westwardly by 550 m.
- The CV5 spodumene pegmatite has now been traced continuously by drilling (at ~50 - 150 m spacing) over a lateral distance of at least 3.7 km and remains open along strike at both ends and to depth along most of its length.
- These are the first drill holes completed to test a westward extension of the CV5 Pegmatite since summer of 2022, when spodumene pegmatite was confirmed to extend from the CV5 outcrop to the CV6 outcrop.
- The 2023 winter drill program has exceeded the total metres completed in the 2022 drill program with a total of eighty-nine (89) drill holes (~32,367 m) completed.
- Core sample assay results for sixty-seven (67) drill holes from the 2023 winter drill program remain to be reported.
- Validation and refinement of the geological model for the CV5 Pegmatite is in the advanced stages and will be followed by block modelling of final analytical data ahead of an initial mineral resource estimate.
- Summer-fall drill program to commence in late May at the CV5 and CV13 pegmatites.
Blair Way, Company President and CEO, comments: “Our winter drill program at the CV5 Pegmatite has been a remarkable success. We have extended the spodumene mineralized pegmatite an additional 1.5 km over the course of the program for a current continuous strike length, which remains open at both ends, of 3.7 km. We are now undergoing final preparation for our summer-fall surface and drill exploration programs as we await final core sample assays from the recent drilling and move closer to an initial mineral resource estimate at CV5.”
Patriot Battery Metals Inc. (the “Company” or “Patriot”) (TSX-V: PMET) (ASX: PMT) (OTCQX: PMETF) (FSE: R9GA) is pleased to provide an update on the 2023 winter drill program recently completed at its wholly owned Corvette Property (the “Property”), located in the Eeyou Istchee James Bay region of Quebec. The winter phase of the 2023 drill campaign was focused on the CV5 Pegmatite, located approximately 13.5 km south of the regional and all-weather Trans-Taiga Road and powerline infrastructure.
Since the last drill program update (see news release dated March 29, 2023), the Company is pleased to report a further extension of the CV5 Pegmatite westwardly by 550 m – to 3.7 km combined strike length – through dominantly spodumene-bearing pegmatite in drill holes moving westwardly from CV22-074 through to CV23-184. Drill holes completed over this 550 m of strike have intersected various widths of continuous pegmatite, dominantly spodumene-bearing, including drill hole CV23-184, the westernmost drill hole completed to date at the CV5 pegmatite, which returned a continuous 93 m core length interval of dominantly spodumene-bearing pegmatite (127 m to 220 m). Collectively, these intersections are interpreted to delineate a near-surface blow-out of the pegmatite in this area and demonstrate a significant potential for the mineralized pegmatite to continue further westwardly.
The 2023 winter drill program recently concluded with a total of eighty-nine (89) drill holes and 32,367 m completed – drill holes CV23-105 through 190 (Table 1). This drilling focused on step-out and infill drilling at the CV5 Pegmatite (NQ core size); however, also included fifteen (15) holes (2,311 m) to support hydrogeological modelling of the envisioned pit area at CV5 as well as three (3) holes (615 m) at the site of the pending camp at KM270 of the Trans-Taiga Road (NQ and HQ core size).
This winter program resulted in further delineation along strike of the CV5 Pegmatite body by 1.5 km – from 2.2 km at the start of the program to the current 3.7 km as announced herein (Figure 1). The CV5 Pegmatite has now been traced continuously by drilling (at ~50-150 m spacing) as a principally continuous spodumene-mineralized body over a lateral distance of at least 3.7 km (CV23-184 to CV23-125) and remains open along strike at both ends and to depth along most of its length.
Additionally, the CV5 Pegmatite has now been delineated to within approximately 1.5 km of the CV4 Pegmatite Cluster to the east, and within approximately 3.8 km of the CV13 Pegmatite Cluster to the west (Figure 2). The Company intends to continue to test the CV5 Pegmatite along strike at both ends, in addition to infill drilling, over the course of the summer-fall program. Favourable indicators that the trend continues include the regional magnetic data, suggesting a continuation of the structural/geological trend hosting CV5 (eastwardly and westwardly towards the CV4 and CV13 clusters, respectively), as well as the location of spodumene-pegmatite boulders in the area suggesting the presence of hidden spodumene-pegmatite undercover along this trend (eastwardly).
The Company is in the advanced stages of validation and refinement of the geological model for the CV5 Pegmatite, which will include all drilling completed to date. The model is being completed dominantly in Leapfrog Geo software using an intrusive and vein modelling (implicit) hybrid approach with final interpretation and validation being completed by the Company’s geological consultants (including the Project’s independent Qualified/Competent Persons) and Vice President of Exploration. Core sample analytical data for a majority of the winter program’s drill holes remain to be reported and incorporated into a final block model, which, when complete, will form the basis of an initial mineral resource estimate for the CV5 Pegmatite scheduled for the June/July period.
The 2023 drill campaign is currently paused due to spring break-up and to accommodate the regional 4-week goose harvesting season when the Cree Nation requests the helicopters stop flying. The Company’s summer-fall drill exploration is scheduled to re-commence in late May at the CV5 and CV13 pegmatites and is planned to include both infill and step-out holes in addition to hydrogeological and geotechnical holes. The summer-fall surface program is scheduled to begin in early June and continue through late September. The planned field work includes further detailed mapping (including structural) at the CV pegmatite clusters, channel sampling of spodumene-bearing outcrops, as well as prospecting and rock sampling over areas of the Property that remain to be evaluated for lithium pegmatite.
Figure 1: Drill holes completed at the CV5 Pegmatite through the 2023 winter drill program (https://www.globenewswire.com/NewsRoom/AttachmentNg/22660a26-dbaa-4cbb-b345-bc7e3b0afac3)
Figure 2: High potential corridors between the CV13, CV5, and CV4 spodumene pegmatite clusters (https://www.globenewswire.com/NewsRoom/AttachmentNg/d4c9826b-eae0-4377-923c-cd0f7ce85e64)
Table 2: 2023 winter drill hole attributes (https://www.globenewswire.com/NewsRoom/AttachmentNg/5d4105f0-0d6a-4fb5-8d41-cdec31f51f4f) (https://www.globenewswire.com/NewsRoom/AttachmentNg/b7f51244-1da4-4922-bcab-98b62d3ee8db)
About the CV Lithium Trend
The CV Lithium Trend is an emerging spodumene pegmatite district discovered by the Company in 2017 and spans more than 25-km across the Corvette Property. The core area includes an approximate 3.7 km long spodumene pegmatite (the ‘CV5 Pegmatite’) and multiple proximal secondary spodumene pegmatite lenses.
To date, six (6) distinct clusters of lithium pegmatite have been discovered across the Corvette Property – CV5 Pegmatite and associated lenses, CV4, CV8-12, CV9, CV10, and the recently discovered CV13. Given the proximity of some pegmatite outcrops to each other, as well as the shallow till cover in the area, it is probable that some of the outcrops may reflect a discontinuous surface exposure of a single, larger pegmatite ‘outcrop’ subsurface. Further, the high number of well-mineralized pegmatites along the trend indicate a strong potential for a series of relatively closely spaced/stacked, sub-parallel, and sizable spodumene-bearing pegmatite bodies, with significant lateral and depth extent, to be present.
Qualified/Competent Person
The information in this news release that relates to exploration results for the Corvette Property is based on, and fairly represents, information compiled by Mr. Darren L. Smith, M.Sc., P.Geo., who is a Qualified Person as defined by National Instrument 43-101, and member in good standing with the Ordre des Géologues du Québec (Geologist Permit number 1968), and with the Association of Professional Engineers and Geoscientists of Alberta (member number 87868). Mr. Smith has reviewed and approved the technical information in this news release.
Mr. Smith is Vice President of Exploration for Patriot Battery Metals Inc. and a Senior Geologist and Project Manager with Dahrouge Geological Consulting Ltd. Mr. Smith holds common shares and options in the Company.
Mr. Smith has sufficient experience, which is relevant to the style of mineralization, type of deposit under consideration, and to the activities being undertaken to qualify as a Competent Person as described by the JORC Code, 2012. Mr. Smith consents to the inclusion in this news release of the matters based on his information in the form and context in which it appears.
About Patriot Battery Metals Inc.
Patriot Battery Metals Inc. is a hard-rock lithium exploration company focused on advancing its district-scale 100% owned Corvette Property located in the Eeyou Istchee James Bay region of Quebec, Canada. The Corvette Property is one of the largest and highest-grade hard rock lithium projects being explored, with over 50 kilometres of strike length over a 214 square kilometre land package and over 70 lithium bearing pegmatite outcrops identified to date.
The Corvette Property is situated proximal to the all-weather Trans Taiga Road and Hydro-Québec power line infrastructure in the Eeyou Istchee James Bay region of Quebec. The Property hosts significant lithium potential highlighted by the CV5 Pegmatite, which has been traced by drilling over a strike length of at least 3.7 km with spodumene pegmatite encountered as deep as 425 m vertical depth.
For further information, please contact us at info@patriotbatterymetals.com or by calling +1 (604) 279-8709, or visit www.patriotbatterymetals.com. Please also refer to the Company’s continuous disclosure filings, available under its profile at www.sedar.com and www.asx.com.au, for available exploration data.
This news release has been approved by the Board of Directors,
“BLAIR WAY”
Blair Way, President, CEO, & Director
Disclaimer for Forward-Looking Information
This news release contains forward-looking statements and other statements that are not historical facts. Forward-looking statements are often identified by terms such as “will”, “may”, “should”, “anticipate”, “expects” and similar expressions. All statements other than statements of historical fact, included in this news release are forward-looking statements that involve risks and uncertainties, including without limitation statements with respect to potential continuity of pegmatite bodies, and mineral resource estimate preparation. There can be no assurance that such statements will prove to be accurate and actual results and future events could differ materially from those anticipated in such statements. Important factors that could cause actual results to differ materially from the Company’s expectations include the results of further exploration and testing, and other risks detailed from time to time in the filings made by the Company with securities regulators, available at www.sedar.com and www.asx.com.au. The reader is cautioned that assumptions used in the preparation of any forward-looking information may prove to be incorrect. Events or circumstances may cause actual results to differ materially from those predicted, as a result of numerous known and unknown risks, uncertainties, and other factors, many of which are beyond the control of the Company. The reader is cautioned not to place undue reliance on any forward-looking information. Such information, although considered reasonable by management at the time of preparation, may prove to be incorrect and actual results may differ materially from those anticipated. Forward-looking statements contained in this news release are expressly qualified by this cautionary statement. The forward-looking statements contained in this news release are made as of the date of this news release and the Company will update or revise publicly any of the included forward-looking statements as expressly required by applicable law.
No securities regulatory authority or stock exchange has reviewed nor accepts responsibility for the adequacy or accuracy of the content of this news release.
Appendix 1 – JORC Code 2012 Table 1 information required by ASX Listing Rule 5.7.1
Section 1 – Sampling Techniques and Data
Criteria |
JORC Code explanation |
Commentary |
Sampling techniques |
- Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.
- Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.
- Aspects of the determination of mineralisation that are Material to the Public Report.
- In cases where ‘industry standard’ work has been done this would be relatively simple (eg ‘reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay’). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.
|
- Core sampling protocols met or exceeded industry standard practices.
- Core Sampling is guided by lithology as determined during geological logging (i.e., by a geologist). All pegmatite intervals are sampled in their entirety (half-core), regardless if spodumene mineralization is noted or not (in order to ensure an unbiased sampling approach) in addition to ~1-3 m of sampling into the adjacent wallrock (dependent on pegmatite interval length) to “bookend” the sampled pegmatite.
- The minimum individual sample length is 0.3 m and the maximum sample length is 3.0 m. Targeted individual pegmatite sample lengths are 1.0 m.
- All drill core is oriented to maximum foliation prior to logging and sampling and is cut with a core saw into half-core pieces, with one half-core collected for assay, and the other half-core remaining in the box for reference.
|
Drilling techniques |
- Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).
|
- NQ or HQ size standard core drilling was completed for all holes and is noted in Table 1 herein this news release. Core is not oriented.
|
Drill sample recovery |
- Method of recording and assessing core and chip sample recoveries and results assessed.
- Measures taken to maximise sample recovery and ensure representative nature of the samples.
- Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.
|
- All drill core was geotechnically logged following industry standard practices, and includes total core recovery, fracture recording, ISRM rock strength and weathering, and RQD. Core recovery is very good and typically exceeds 90%.
|
Logging |
- Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.
- Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.
- The total length and percentage of the relevant intersections logged.
|
- Upon receipt at the core shack, all drill core received is pieced together, oriented to maximum foliation, metre marked, geotechnically logged (including structure), alteration logged, geologically logged, and sample logged on an individual sample basis. Core box photos are also collected of all core drilled, regardless of perceived mineralization. Specific gravity measurements are also collected at systematic intervals for all drill core.
- These logging practices meet or exceed current industry standard practices and are of appropriate detail to support a mineral resource estimation.
- The logging is qualitative by nature, and includes estimates of spodumene grain size, inclusions, and model mineral estimates.
|
Sub-sampling techniques and sample preparation |
- If core, whether cut or sawn and whether quarter, half or all core taken.
- If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.
- For all sample types, the nature, quality and appropriateness of the sample preparation technique.
- Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.
- Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.
- Whether sample sizes are appropriate to the grain size of the material being sampled.
|
- N/A, no assay data presented.
|
Quality of assay data and laboratory tests |
- The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.
- For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.
- Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.
|
- N/A, no assay data presented.
|
Verification of sampling and assaying |
- The verification of significant intersections by either independent or alternative company personnel.
- The use of twinned holes.
- Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.
- Discuss any adjustment to assay data.
|
- Intervals are reviewed and compiled by the VP Exploration and Project Managers prior to disclosure, including a review of the Company’s internal QAQC samples if analytical data.
- No twinned holes have been completed, as all of the drilling in the area of interest is within the last two years.
- Data capture utilizes MX Deposit software whereby core logging data is entered directly into the software for storage, including direct import of laboratory analytical certificates as they are received. The Company employs various on-site and post QAQC protocols to ensure data integrity and accuracy.
|
Location of data points |
- Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.
- Specification of the grid system used.
- Quality and adequacy of topographic control.
|
- Each drill hole is collar has been surveyed with a handheld GPS or RTK (Trimble Zephyr 3).
- The coordinate system used is UTM NAD83 Zone 18.
- The Company completed a property-wide LiDAR and orthophoto survey in August 2022, which provides high-quality topographic control.
- The quality and accuracy of the topographic controls are considered adequate for advanced stage exploration and development.
|
Data spacing and distribution |
- Data spacing for reporting of Exploration Results.
- Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.
- Whether sample compositing has been applied.
|
- Drill hole spacing is dominantly at ~100 m; however, tightens to ~50 m in some places.
- Based on the nature of the mineralization and continuity in geological modelling, it is believed that a 100 m spacing will be sufficient to support an inferred mineral resource estimate.
|
Orientation of data in relation to geological structure |
- Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.
- If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.
|
- No sampling bias is anticipated based on structure within the mineralized body.
- The mineralized body is relatively undeformed and very competent, although likely has some meaningful structural control.
- The mineralized body is steeply dipping resulting in oblique angles of intersection with true widths varying based on drill hole angle and orientation of pegmatite at that particular intersection point. i.e. The dip of the mineralized pegmatite body has variations in a vertical sense and along strike, so the true widths are not always apparent until several holes have been drilled in any particular drill-fence.
|
Sample security |
- The measures taken to ensure sample security.
|
- N/A, no assay data presented.
|
Audits or reviews |
- The results of any audits or reviews of sampling techniques and data.
|
- A review of the sample procedures for the Company’s 2021 fall drill program (CF21-001 to 004) and 2022 winter drill program (CV22-015 to 034) was completed by an Independent Qualified Person and deemed adequate and acceptable to industry best practices (discussed in an “NI 43-101 Technical Report on the Corvette Property, Quebec, Canada”, Issue date of June 27, 2022.) Additionally, the Company continually reviews and evaluates its procedures in order to optimize and ensure compliance at all levels of sample data collection and handling.
|
Section 2 Reporting of Exploration Results
(Criteria listed in the preceding section also apply to this section.)
Criteria |
|
JORC Code explanation |
Commentary |
Mineral tenement and land tenure status |
- Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.
- The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.
|
- The Corvette Property is comprised of 417 claims located in the James Bay Region of Quebec with all claims registered to the Company. The Property is located approximately 10-15 km south of the Trans-Taiga Road and powerline infrastructure corridor.
- The Company holds 100% interest in the Property subject to various royalty obligations depending on original acquisition agreements. DG Resources Management holds a 2% NSR (no buyback) on 76 claims, D.B.A. Canadian Mining House holds a 2% NSR on 50 claims (half buyback for $2M) and Osisko Gold Royalties holds a sliding scale NSR of 1.5-3.5% on precious metals, and 2% on all other products, over 111 claims.
- The Property does not overlap any sensitive environmental areas or parks, or historical sites to the knowledge of the Company. There are no known hinderances to operating at the Property, apart from the goose hunting season (April 20th to May 20th) where the communities request no drilling or flying be completed.
- Claim expiry dates range from July 2023 to July 2025.
|
Exploration done by other parties |
- Acknowledgment and appraisal of exploration by other parties.
|
- No assay results from other parties are disclosed herein.
- The most recent independent Property review was a NI 43-101 Technical Report on the Corvette Property, Quebec, Canada”, Issue date of June 27, 2022.
|
Geology |
- Deposit type, geological setting and style of mineralisation.
|
- The Property is situated within the Lac Guyer Greenstone Belt, considered part of the larger La Grande River Greenstone Belt and is dominated by volcanic rocks metamorphosed to amphibolite facies. The claim block is dominantly underlain by the Guyer Group (basaltic amphibolite, iron formation) and the Corvette Formation (amphibolite of intermediate to mafic volcanics). Several occurrences of ultramafic rocks (peridotite, pyroxenite, komatiite) as well as felsic volcanics (tuffs) are also mapped over areas of the Property. The basaltic amphibolite rocks that trend east-west (generally south dipping) through this region are bordered to the north by the Magin Formation (conglomerate and wacke) and to the south by an assemblage of tonalite, granodiorite, and diorite. Several regional-scale Proterozoic gabbroic dykes also cut through portions of the Property (Lac Spirt Dykes, Senneterre Dykes).
- The geologic setting is prospective for gold, silver, base metals, platinum group elements, and lithium over several different deposit styles including orogenic gold (Au), volcanogenic massive sulfide (Cu, Au, Ag), komatiite-ultramafic (Au, Ag, PGE, Ni, Cu, Co), and pegmatite (Li, Ta).
- Exploration of the Property has outlined three primary mineral exploration trends crossing dominantly east-west over large portions of the Property – Maven Trend (copper, gold, silver), Golden Trend (gold), and CV Trend (lithium, tantalum). Lithium mineralization at the Property is observed to occur within quartz-feldspar pegmatite (LCT Pegmatites), often exposed at surface as high relief ‘whale-back’ landforms. The pegmatite is often very coarse-grained and off-white in appearance, with darker sections commonly composed of mica and smoky quartz, and occasional tourmaline.
- The lithium pegmatites at Corvette are LCT Pegmatites. Preliminary mineralogical studies of the CV5, CV6, and CV12 pegmatites (based on 22 pegmatite core samples), coupled with field mineral identification and assays, indicate spodumene as the dominant lithium-bearing mineral (~98-99%) on the Property, with no significant petalite, lepidolite, lithium-phosphate minerals, or apatite present. The pegmatites at Corvette also carry significant tantalum values with tantalite indicated to be the mineral phase.
|
Drill hole Information |
- A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:
- easting and northing of the drill hole collar
- elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar
- dip and azimuth of the hole
- down hole length and interception depth
- hole length.
- If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.
|
- Drill hole attribute information is included in a Table herein this news release.
|
Data aggregation methods |
- In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.
- Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.
- The assumptions used for any reporting of metal equivalent values should be clearly stated.
|
- N/A, no assay data presented.
|
Relationship between mineralisation widths and intercept lengths |
- These relationships are particularly important in the reporting of Exploration Results.
- If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.
- If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg ‘down hole length, true width not known’).
|
- Geological modelling is ongoing; however, current interpretation supports a large pegmatite body (CV5) of near vertical to steeply dipping orientation, flanked by several secondary pegmatite lenses
- All reported widths are core length. True widths are not known and may vary widely from hole to hole based on the drill hole angle and the highly variable nature of pegmatite bodies, which tend to pinch and swell aggressively along strike and to depth. i.e. The dip of the mineralized pegmatite body has variations in a vertical sense and along strike, so the true widths are not always apparent until several holes have been drilled in any particular drill-fence.
|
Diagrams |
- Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.
|
- Please refer to the figures included herein as well as those posted on the Company’s website.
|
Balanced reporting |
- Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.
|
- Please refer to the table(s) included herein as well as those posted on the Company’s website.
|
Other substantive exploration data |
- Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.
|
- The Company has completed various surface exploration programs in 2022 and is compiling assay results.
- The Company is currently completing baseline environmental work over the CV5 Pegmatite area. No endangered flora or fauna have been documented over the Property to date, and several sites have been identified as potentially suitable for mine infrastructure.
- The Company has completed a bathymetric survey over the shallow glacial lake which overlies a portion of the mineralized body. The lake depth ranges from <2 m to approximately 18 m, and is typically less than 10 m over the mineralized body.
- The Company has completed preliminary metallurgical testing comprised of HLS and magnetic testing, which has produced 6+% Li2O spodumene concentrates at >70% recovery. A DMS test followed returning a spodumene concentrate grading 5.8% Li2O at 79% recovery. The data suggests potential for a DMS only operation to be applicable to the project.
- A geochemical characterization program has been initiated to evaluate waste rock etc. Initial review of the Company’s analytical database did not outline any significant issues. A preliminary suite of samples has been selected for testwork, which is ongoing.
- Various mandates required for advancing the Project towards economic studies have been initiated, including but not limited to, geomechanics, hydrogeology, hydrology, stakeholder engagement, and transportation and logistical studies.
|
Further work |
- The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling).
- Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.
|
- The Company intends to continue drilling the pegmatites of the Corvette Property, focused on the CV5 Pegmatite and adjacent secondary lenses. The mineralized pegmatites remain open along strike, and to depth at most locations along strike. Drilling is also anticipated to continue at the CV13 pegmatite cluster as well as other pegmatite clusters at the Property. The details of these programs are still being developed. An initial mineral resource estimate is anticipated to be completed for the CV5 Pegmatite in Q2 2023.
|