Join today and have your say! It’s FREE!

Become a member today, It's free!

We will not release or resell your information to third parties without your permission.
Please Try Again
{{ error }}
By providing my email, I consent to receiving investment related electronic messages from Stockhouse.

or

Sign In

Please Try Again
{{ error }}
Password Hint : {{passwordHint}}
Forgot Password?

or

Please Try Again {{ error }}

Send my password

SUCCESS
An email was sent with password retrieval instructions. Please go to the link in the email message to retrieve your password.

Become a member today, It's free!

We will not release or resell your information to third parties without your permission.

Theralase Technologies Inc. V.TLT

Alternate Symbol(s):  V.TLT.WT | TLTFF

Theralase Technologies Inc. is a Canada-based clinical-stage pharmaceutical company. The Company is engaged in the research and development of light activated compounds and their associated drug formulations. The Company operates through two divisions: Anti-Cancer Therapy (ACT) and Cool Laser Therapy (CLT). The Anti-Cancer Therapy division develops patented, and patent pending drugs, called Photo Dynamic Compounds (PDCs) and activates them with patent pending laser technology to destroy specifically targeted cancers, bacteria and viruses. The CLT division is responsible for the Company’s medical laser business. The Cool Laser Therapy division designs, develops, manufactures and markets super-pulsed laser technology indicated for the healing of chronic knee pain. The technology has been used off-label for healing numerous nerve, muscle and joint conditions. The Company develops products both internally and using the assistance of specialist external resources.


TSXV:TLT - Post by User

Post by Eoganachton Nov 16, 2022 12:10pm
417 Views
Post# 35103628

Low dose X-ray-Induced PDT - The future of Theralase?

Low dose X-ray-Induced PDT - The future of Theralase? This recent paper (November 15) from researchers in the People's Republic of China (Shanghai Jiao Tong University) deals with the use of X-ray PDT against deep seated tumours. It is clear from the illustration that these researchers regard the clinically approved use of low dose X-ray PDT with PSs such as TLD1433, as the future trend. The Google Search teaser makes it clear that TLD-1433 is discussed:

"This short review surveys two recent clin. examples of metal complexes, namely TOOKAD-Sol. and TLD-1433, which have ideal photophys. properties to act as ..."

If you want to read the full article you can purchase it for 48 hours for $40.

Recent Progress and Trends in X-ray-Induced Photodynamic Therapy with Low Radiation Doses

Liangrui He, Xujiang Yu*, and Wanwan Li*
 
Abstract Image
 
 
Abstract
 
The prominence of photodynamic therapy (PDT) in treating superficial skin cancer inspires innovative solutions for its congenitally deficient shadow penetration of the visible-light excitation. X-ray-induced photodynamic therapy (X-PDT) has been proven to be a successful technique in reforming the conventional PDT for deep-seated tumors by creatively utilizing penetrating X-rays as external excitation sources and has witnessed rapid developments over the past several years. Beyond the proof-of-concept demonstration, recent advances in X-PDT have exhibited a trend of minimizing X-ray radiation doses to quite low values. As such, scintillating materials used to bridge X-rays and photosensitizers play a significant role, as do diverse well-designed irradiation modes and smart strategies for improving the tumor microenvironment. Here in this review, we provide a comprehensive summary of recent achievements in X-PDT and highlight trending efforts using low doses of X-ray radiation. We first describe the concept of X-PDT and its relationships with radiodynamic therapy and radiotherapy and then dissect the mechanism of X-ray absorption and conversion by scintillating materials, reactive oxygen species evaluation for X-PDT, and radiation side effects and clinical concerns on X-ray radiation. Finally, we discuss a detailed overview of recent progress regarding low-dose X-PDT and present perspectives on possible clinical translation. It is expected that the pursuit of low-dose X-PDT will facilitate significant breakthroughs, both fundamentally and clinically, for effective deep-seated cancer treatment in the near future.
 

<< Previous
Bullboard Posts
Next >>